- »ð·ïÖ±²¥ {ÈÈÃÅÍÆ¼ö}
- NBA¾«²ÊÖ±²¥
- ×ãÇòÏÖ³¡Ö±²¥
- ÌðÐÄÖ÷²¥½âÅÌ
ÃçÔ£º×ãпª»áÕû¶ÙÈü·çÈü¼Í£¬ÌÖÂÛ½üÆÚ²»ºÍгÏÖÏó¡£
ÔÚ4ÔÂ24ÈÕµÄÖ±²¥ÖУ¬¾ÝÖªÃûýÌåÈËÃçÔÔÚÉ罻ýÌåÉÏ͸¶µÄÏûÏ¢£¬Öйú×ãÇòлᵱÌìÕÙ¼¯ÁËÒ»³¡ÖØÒªµÄ»áÒé¡£´Ë´Î»áÒéµÄÒéÌâÖ÷ÒªÊÇÕë¶Ô½üÆÚÈü³¡ÉϳöÏÖµÄһϵÁв»ºÍгÏÖÏó£¬Ö¼ÔÚÕû¶ÙÇò¶ÓµÄÈü·çÈü¼Í¡£
ÃçÔÏêϸµØÐ´µÀ£¬×ãÐÒѾ²ì¾õµ½ÁËÇò³¡ÉϵÄÖî¶àÎÊÌ⣬¾ö¶¨½ñÌì½øÐÐÌÖÂÛ²¢Ñ°Çó½â¾öÖ®µÀ¡£²»½öÕë¶Ô˼ÏëÉϵÄÎÊÌ⣬´Ë´Î»áÒéÒ²º¸ÇÁËÈü³¡ÉϵÄÖÖÖÖ²»¹æ·¶ÐÐΪ¡£ÖÐ×ãÁªÒ²»ý¼«²ÎÓëÆäÖУ¬»áÒéµÄ¹æ¸ñÖ®¸ß£¬ÏÔʾ³ö×ãжԴ˴ÎÕû¶ÙµÄ¾öÐĺÍÖØÊӳ̶ȡ£
ÖµµÃÒ»ÌáµÄÊÇ£¬´Ë´Î»áÒéÒÔÊÓÆµÐÎʽ½øÐУ¬ËùÓоãÀÖ²¿µÄÄÐÅ®Çò¶Ó¶¼²ÎÓëÁËÕâ´Î²Î»á¡£¸÷¶Ó¡¢¸÷ÈüÇøÒÔ¼°ÇòÃÔлᶼӦ¸Ã¸ß¶È¹Ø×¢´Ë´Î»áÒéµÄÄÚÈݺͺóÐøÐж¯¡£×ãÐÏ£ÍûÒÔ´ËΪÆõ»ú£¬´Ó¶à¸ö·½Ãæ¼ÓÇ¿Çò¶ÓµÄ¹ÜÀíºÍ½ÌÓý£¬´òÔìÒ»¸ö¸üΪ¹«Æ½¡¢ºÍгµÄ×ãÇò±ÈÈü»·¾³¡£ÎÞÂÛÊÇÔÚÈü³¡ÄÚÍâµÄÐÐΪ£¬»¹ÊǶÔÓÚ¹æÔòµÄ×ñÊØºÍ×ðÖØ£¬¶¼ÊÇ×ãÇòÔ˶¯Öв»¿É»òȱµÄ²¿·Ö¡£...º¯Êýf(x) = (1/3)x^3 - x^2 - 9x + a µÄ¼«Öµ.
¡¾·ÖÎö¡¿
ÀûÓõ¼ÊýÑо¿º¯ÊýµÄµ¥µ÷ÐÔÊÇÇó¼«ÖµµÄ»ù±¾·½·¨£®Ê×Ïȸù¾Ýº¯Êý½âÎöʽÇó³öµ¼Êý$f^{\prime}(x)$£¬ÔÙÁî$f^{\prime}(x) = 0$Çó³öÁÙ½çµã£¬È»ºó¸ù¾Ýµ¼ÊýµÄÕý¸ºÅжϺ¯ÊýµÄµ¥µ÷ÐÔ£¬´Ó¶øÇó³öº¯ÊýµÄ¼«Öµ£®
¡¾½â´ð¡¿
½â£ºÓÉÌâÒâµÃ$f^{\prime}(x) = x^{2} - 2x - 9 = (x + 3)(x - 3)$£®
Áî$f^{\prime}(x) = 0$µÃ$x = - 3$»ò$x = 3$£®
µ±$x < - 3$»ò$x > 3$ʱ£¬$f^{\prime}(x) > 0$£»µ±$- 3 < x < 3$ʱ£¬$f^{\prime}(x) < 0$£®
Òò´Ëº¯ÊýÔÚ$( - \infty, - 3)$ÉϵÝÔö£¬ÔÚ$( - 3,3)$Éϵݼõ£¬ÔÚ$(3, + \infty)$ÉϵÝÔö£®
ËùÒÔµ±$x = - 3$ʱº¯ÊýÓм«´óÖµ£»µ±$x = 3$ʱº¯ÊýÓм«Ð¡Öµ£®
¼«´óֵΪ£º$f( - 3) = \frac{1}{3} \times ( - 3)^{3} - ( - 3)^{2} - 9 \times ( - 3) + a = a + 18$£»
¼«Ð¡ÖµÎª£º$f(3) = \frac{1}{3} \times 3^{3} - 3^{2} - 9 \times 3 + a = a - 18$£®